Inhibition of neutrophil apoptosis via sphingolipid signaling in acute lung injury.
نویسندگان
چکیده
Acute lung injury (ALI) is characterized by lung inflammation and diffuse infiltration of neutrophils into the alveolar space. The inhibition of alveolar neutrophil apoptosis has been implicated in the pathogenesis of ALI. Although sphingolipids may regulate cell apoptosis, the role of sphingolipids in activated neutrophils during ALI is not clear. In this study, we test the hypothesis that sphingolipids would attenuate neutrophil apoptosis that contributes to the development of ALI. Lipopolysaccharide (LPS)-stimulated human neutrophils, with or without inhibitor treatment, were analyzed for apoptosis. We found that the inhibitory effect of LPS on neutrophil apoptosis was blocked by treatment with the neutral sphingomyelinase (nSMase) inhibitor sphingolactone-24 (Sph-24), sphingosine kinase inhibitor II, and p38 mitogen-activated protein kinase (MAPK) inhibitor 4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine (SB203580) but not by the acidic sphingomyelinase inhibitor chlorpromazine. LPS-activated phosphorylation of p38 MAPK also was attenuated by treatment with Sph-24 and sphingosine kinase inhibitor II. Furthermore, mice with LPS-induced lung injury were treated with the nSMase inhibitor Sph-24 to evaluate its impact on lung injury and survival. The severity of LPS-induced ALI was reduced, and the survival rate was increased in mice treated with Sph-24 compared with that in those given LPS alone. Intracellular levels of sphingolipids in alveolar neutrophils from patients with acute respiratory distress syndrome also were measured. We found that intracellular levels of ceramide and phospho-p38 MAPK were elevated in alveolar neutrophils from acute respiratory distress syndrome patients. Our results demonstrate that activation of the nSMase/sphingosine-1-phosphate pathway to induce p38 MAPK phosphorylation results in inhibition of neutrophil apoptosis, which may contribute to the development of ALI.
منابع مشابه
Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation.
Polymorphonuclear neutrophil granulocytes have a central role in innate immunity and their programmed cell death and removal are critical for efficient resolution of acute inflammation. Myeloperoxidase (MPO), a heme protein abundantly expressed in neutrophils, is generally associated with killing of bacteria and oxidative tissue injury. Because MPO also binds to neutrophils, we investigated whe...
متن کاملKallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis
Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory ...
متن کاملInhibition of neutrophil apoptosis by PAI-1.
Increased circulating and tissue levels of plasminogen activator inhibitor 1 (PAI-1) are often present in severe inflammatory states associated with neutrophil activation and accumulation and correlate with poor clinical outcome from many of these conditions. The mechanisms by which PAI-1 contributes to inflammation have not been fully delineated. In the present experiments, we found that addit...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملTime-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury
Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 339 1 شماره
صفحات -
تاریخ انتشار 2011